[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

**To**:**aquatic-plants at actwin_com****Subject**:**RE: PAR, Lumens, Watts, etc****From**:**busko at stsci_edu (Ivo Busko)**- Date: Mon, 22 Mar 1999 14:10:55 -0500 (EST)
- Cc: busko at stsci_edu

The recent thread on PAR/lumens/watts prompted me to pursue a small project I was thinking about. When selecting fluorescent bulbs for my planted aquarium, I couldn't find any consistent quantitative info to use as selection criteria (besides price...). I had spectral plots and lumen specs, but how these translate into PAR and other pertinent measures ? Being limited by space above the tank (and money) to 2 watt/gal, I wanted to have the most bang for my watts. But with the spectral plot, lumen and watt rating for a bulb, it is possible to derive such measures. I already sketched the principles in a former posting, but after that post I realized that I had at my fingertips all the resources to carry out the project: just a computer and the appropriate software. The basic idea is that, from the manufacturer's published bulb spectrum (in relative units) and the bulb's published lumen output and electrical power consumption, we can in principle compute other bulb parameters such as PAR output. For carrying out the comparisons, I used only spectral curves and bulb data I was able to get from the web, as well as some web-published photosynthesis action spectra. I can send/post the data sources if requested. I also had to write a short computer program to carry out the computations. I got data just for NO fluorescents, since this is the type of bulb in which I'm interested. But the methodology is general and applicable to *any* light source. For people interested in this, I can send a detailed description of the computation steps, as well as a discussion of possible error sources (they would make this posting too long). If anyone has access to spectral curves of bulbs not listed in here, I'll appreciate to get a pointer to them. The columns in the table list the following quantities: Power: the bulb's rated power. Maximum lumen output; this theoretical value depends only on the bulb's spectrum and rated power. It is the lumen output that the bulb would have if all electrical energy input to the bulb were transformed into luminous energy. Rated lumens: (initial) taken from bulb's specs, except the Triton and P&A, which are educated guesses. Efficiency: the ratio between rated lumens and maximum lumens. I was a bit surprised by the low values. How manufacturers compute fluorescent bulb efficiencies ? I was expecting values in the range of 0.3-0.5. PAR: the bulb's output in PAR. The units are just photons/sec, I don't know what are the appropriate units in which to express PAR measures. But these figures are OK as far as *relative* comparisons go. MPAR: Modified PAR (this was the main goal of the experiment !). There has been some suggestions to use a photosynthesis action spectrum to weight the PAR measure, in the same way as the eye's photopic response is used to weight the lumen measure. This is exactly what I did here, using an "average" action spectrum curve. The "total" column lists the sum of all photons in the range 400-700nm. But since there are no clues in these figures about the *relative* amount of red and blue photons, I also computed MPAR in the 400-500 nm range only (blue) and 600-700 nm range only (red). R/B is just the ratio between the red and blue MPARs. Bulb Power Max. Rated Effic. PAR MPAR R/B (W) lumens lumens total blue red (1.E15 phot./sec) Triton 40 8000 2200 0.28 170 105 68 23 0.34 AX50 40 12000 3600 0.30 200 100 48 36 0.75 PowerGlo 40 8500 2200 0.26 160 100 58 22 0.38 AquaGlo 40 4800 960 0.20 140 94 35 52 1.50 GroLux 40 5900 1200 0.20 140 87 26 53 2.05 SP65 40 11700 3050 0.26 170 87 43 24 0.57 Daylight Dlx. 40 10400 2550 0.25 160 83 39 25 0.65 C50 40 9900 2250 0.23 160 76 26 34 1.32 SunGlo 40 13400 3100 0.23 150 72 31 19 0.61 P&A 40 9200 1900 0.21 150 70 15 42 2.90 FloraGlo 40 12500 2180 0.17 120 57 9 33 3.77 TL950 32 12500 2000 0.16 90 34 8 10 1.23 The table lists the bulbs in decreasing MPAR order. It is roughly also the PAR decreasing order, but not quite so. But I think the most interesting result is the blue/red comparison. There is a hint of a correlation of R/B with MPAR output, in the sense that the highest MPAR bulbs are also the bluest, and the ones with the least production of PAR photons are also the reddest. Thus very high PAR (or MPAR) output shouldn't be the only criterion when seeking for the optimum bulb, if the goal is to have also a good balance between red and blue. It is easy, from this data, to compute figures for multi/mixed bulb configurations, by just adding the individual bulb's measures, weighted by the number of bulbs of each type in the mix. So it should be easy to come up with optimum mixes given the constraints of ones' configuration. And bear in mind: these results are only as good as the manufacturer's published spectral curves allow them to be. Some curves seem to be quite accurate and have adequate spectral resolution (AX50, SP65, Daylight Deluxe). Others have somewhat less detail (TL950, P&A, C50), and others are grossly smoothed out (the Hagen "Glo" bulbs). I estimate that erors should be a few percent for the best data, up to 10-15 percent in the absolute values (much less in R/B) for the worst ones. And just wondering: why lumens are defined in terms of energy while PARs are defined in terms of photons ? Are the processes acting in the eye not driven by photons, as photosynthesis is ? -Ivo Busko Baltimore, MD

- Prev by Date:
**K2SO4** - Next by Date:
**Re: Halogen Egg Lites** - Prev by thread:
**Re: PAR, Lumens, Watts, etc** - Next by thread:
**PAR** - Index(es):